Systematic multiscale models for deep convection on mesoscales

نویسنده

  • Andrew J. Majda
چکیده

This paper builds on recent developments of a unified asymptotic approach to meteorological modeling [ZAMM, 80:765–777, 2000, SIAM Proc. App. Math. 116, 227–289, 2004], which was used successfully in the development of Systematic multiscale models for the tropics in Majda and Klein [J. Atmosph. Sci. 60: 393–408, 2003] and Majda and Biello [PNAS, 101: 4736–4741, 2004]. Biello and Majda [J. Atmosph. Sci. 62: 1694–1720, 2005]. Here we account for typical bulk microphysics parameterizations of moist processes within this framework. The key steps are careful nondimensionalization of the bulk microphysics equations and the choice of appropriate distinguished limits for the various nondimensional small parameters that appear. We are then in a position to study scale interactions in the atmosphere involving moist physics. We demonstrate this by developing two systematic multiscale models that are motivated by our interest in mesoscale organized convection. The emphasis here is on multiple length scales but common time scales. The first of these models describes the short-time evolution of slender, deep convective hot towers with horizontal scale ∼ 1 km interacting with the linearized momentum balance on length and time scales of (10 km/3 min). We expect this model to describe how convective inhibition may be overcome near the surface, how the onset of deep convection triggers convective-scale gravity waves, and that it will also yield new insight into how such local convective events may conspire to create larger-scale strong storms. The second model addresses the next larger range of length and time scales (10 km, 100 km, and 20 min) and exhibits mathematical features that are strongly reminiscent of mesoscale organized convection. In both cases, the asymptotic analysis reveals how the stiffness of condensation/evaporation processes induces highly nonlinear dynamics. Besides providing new theoretical insights, the derived models may also serve as a theoretical devices for analyzing and interpreting the results of complex moist process model simulations, and they may stimulate the development of new, theoretically grounded sub-grid-scale parameterizations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Models with Moisture and Systematic Strategies for Superparameterization

The accurate parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate through numerical models. Superparameterization is a promising recent alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model. Basic scales for cloud-resolving modeling are the microsc...

متن کامل

New Multiscale Models and Self-Similarity in Tropical Convection

One of the unexplained striking features of tropical convection is the observed statistical self-similarity, in clusters, superclusters, and intraseasonal oscillations through complex multi-scale processes ranging from the mesoscales to the equatorial synoptic scales to the intraseasonal/planetary scales. Here new multi-spatial scale, multi-time scale, simplified asymptotic models are derived s...

متن کامل

Madden-Julian Oscillation analog and intraseasonal variability in a multicloud model above the equator.

The Madden-Julian Oscillation (MJO) is the dominant component of tropical intraseasonal variability, and a theory explaining its structure and successful numerical simulation remains a major challenge. A successful model for the MJO should have a propagation speed of 4-7 m/s predicted by theory; a wavenumber-2 or -3 structure for the planetary-scale, low-frequency envelope with distinct active ...

متن کامل

Multiscale Models for Cumulus Cloud Dynamics

Cumulus clouds involve processes on a vast range of scales—including cloud droplets, turbulent mixing, and updrafts and downdrafts—and it is often difficult to determine how processes on different scales interact with each other. In this article, several multiscale asymptotic models are derived for cumulus cloud dynamics in order to (i) provide a systematic scale analysis on each scale and (ii)...

متن کامل

Multiscale Analysis for Convection Dominated Transport Equations

In this paper, we perform a systematic multiscale analysis for convection dominated transport equations with a weak diffusion and a highly oscillatory velocity field. The paper primarily focuses on upscaling linear transport equations. But we also discuss briefly how to upscale two-phase miscible flows, in which case the concentration equation is coupled to the pressure equation in a nonlinear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005